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Abstract. The efficacy of a specially constructed Gallager-type error-correcting code to
communication in a Gaussian channel is examined. The construction is based on the introduction of
complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading
connection values. The finite-size effects are estimated for comparing the results with the bounds
set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems
nearly saturates the bounds set by Shannon even when the connectivity used is low.

Information transmission is typically corrupted by some characteristic channel noise. Various
strategies have been adopted for reducing or eliminating the noise in the received message.
One of the main approaches is the use of error-correcting codes whereby the original message
is encoded prior to transmission in a manner that enables the retrieval of the original message
from the corrupted codeword. The maximal transmission rate is bounded by the channel
capacity derived by Shannon [1] in his ground-breaking work of 1948, which does not provide
specific constructions of optimal codes.

Various types of error-correcting codes have been devised over the years (for a review
see [2]) for improving the transmission efficiency, most of them are generally still below
Shannon’s limit. We will concentrate here on a member of the parity-check codes family
introduced by Gallager [3], termed the MN code [4], and on a specific construction suggested
by us previously [5] for the binary symmetric channel (BSC).

The connection between parity-check codes and statistical physics was first pointed
out in [6], by mapping the decoding problem onto that of a particular Ising system with
multi-spin interactions. The corresponding Hamiltonian has been investigated in both fully
connected [6] and diluted systems [7, 8] for deriving the typical performance of these codes;
more complex architectures, somewhat similar to those examined below have been investigated
in [9], establishing the connection between statistical physics and Gallager-type codes. Most
of these studies have been carried out for a particular channel model, the BSC, whereby a
fraction of the transmitted vector bits is flipped at random during transmission.

However, different noise models may be considered for simulating communication in
various media. One of the most commonly used noise models, which is arguably the most
suitable one for a wide range of applications, is that of additive Gaussian noise (usually
termed additive white Gaussian noise (AWGN) in the literature). In this scenario, a message
comprisingN binary bits is transmitted through a noisy communication channel; a certain
power level is used in transmitting the information which we will choose to be±1 for simplicity.
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The transmitted message is then corrupted by additive Gaussian noise of zero mean and some
varianceσ 2; the received (real valued) message is then decoded to retrieve the original message.

The receiver can correct the flipped bits only if the source transmitsM > N bits; the
ratio between the original number of bits and those of the transmitted messageR ≡ N/M

constitutes the code rate for unbiased messages. The channel capacity in the case of real-valued
transmissions corrupted by Gaussian noise, which provides the bound on the maximal code
rateRc, is given explicitly [10] by

Rc = 1
2 log(1 +v2/σ 2) (1)

wherev2 is the power used for transmission (which we take here to be±1) andv2/σ 2 is
therefore the signal-to-noise ratio. However, we will focus here onbinary source messages;
this reduces the maximal code rate to [10]

Rc = −
∫

dyP (y) logP(y) +
∫

dyP (y|x = x0) logP(y|x = x0) (2)

wherex is a transmitted bit (of valuex0 = ±1) andy the received bit after corruption by an
additive Gaussian noise, such that

P(y) = 1

2
√

2πσ 2
[e−(y−x)

2/(2σ 2) + e−(y+x)2/(2σ 2)].

The specific error-correcting code that we will use here is a variation of the Gallager
code [3]. It became popular recently due to the excellent performance of its regular [4],
irregular [11–13] and cascading connection [5] versions. In the original method, the transmitted
message comprises the original message itself and additional bits, each of which is derived
from the parity of a sum of certain message-vector bits. The choice of the message-vector
elements used for generating single codeword bits is carried out according to a predetermined
random set-up and may be represented by a product of a randomly generated sparse matrix
and the message vector in a manner explained below. Decoding the received message relies
on iterative probabilistic methods such as belief propagation [4,14] or belief revision [15].

In the MN code one constructs two sparse matricesAandB of dimensionalitiesM×N and
M ×M respectively. The matrixA hasK non-zero (unit) elements per row andC(=KM/N)
per column whileB hasL per row/column. The matrixB−1A is then used for encoding the
message

tB = B−1As (mod 2).

The Boolean message vectortB is then transmitted as a vectort of real-valuedelements, which
we will choose for simplicity as±1, and is corrupted by a real-valued noise vectorν, where
each element is sampled from a Gaussian distribution of zero mean and varianceσ 2. The
received message is of the form

r = t + ν.

Using the noise model and the probability of the transmitted bit beingtµ = ±1 given the
received valuerµ:

P(tµ = ±1|rµ) = e−(tµ−rµ)
2/2σ 2

e−(tµ−rµ)2/2σ 2 + e−(tµ+rµ)2/2σ 2 =
1

1 + e−2tµrµ/σ 2 (3)

one can easily convert the real-valued noiseν to a flip noise vector such that the probability
of an errornµ = 1 (error) is

P(nµ = 1) = 1

1 + e2tµrµ/σ 2 (4)
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wheretµ = ±1 is the actual transmitted value. Note thatP(nµ = 1) may be larger than12.
The noise vectorn and our estimate for the transmitted vectort̂ are defined probabilistically
by using the probabilities derived in (4) and (3), respectively.

Having an estimate for the transmitted vectort̂ as well as an estimate for the noise vector
n, one decodes the binary received messaget̂ by employing the matrixB to obtain

z = B t̂ = As +Bn. (5)

This requires solving the equation

[A,B]

[
s′

n′

]
= z

wheres′ andn′ are the unknowns. Solving the equations is being carried out here using
methods of belief network decoding [4, 14], where pseudo-posterior probabilities, for the
decoded message bits being 0 or 1, are calculated by solving iteratively a set of equations for
the conditional probabilities of the codeword bits given the decoded message and vice versa.
For exact details of the method used and the equation themselves see [4]. Two differences
from the framework used in the case of a BSC should be noted. (a) The probabilities of (4)
and (3) may be used for defining the priors forsingle componentsof the noise and signal
vectors respectively. (b) Initial conditions for the noise part of the dynamics may also be
derived using (4).

The key point in obtaining improved performance is the construction of the matricesA

andB. The original MN code [4] as well as that of Gallager [3] advocated the use of regular
architectures with fixed column connectivity; it was also suggested that fixedK values may
be preferred. Recent work in the area of irregular codes [11–13] suggest that irregular codes
have the potential of providing superior performance which nearly saturates Shannon’s limit.
These methods concentrate on different column connectivities and use highK andC values
(up to 50), which of course increase the complexity of the algorithm and the decoding time
required. Decoding delays are of major consideration in most practical applications.

Our method uses the same structure as the MN codes and builds on insight gained from
the study of physical systems with symmetric and asymmetric [16] multi-spin interactions
and from examining special cases of Gallager’s method [7, 9]. Our previous studies for the
binary symmetric channel [5] suggest that a careful construction, based on differentK andL
values for the sub-matrices ofA andB respectively, while keeping the connectivity of each
of the sub-matrices (and of the matrix as a whole) as uniform as possible, will provide the
best results. The guidelines for this architecture are given below and come from the mean-
field calculations of [5, 17], showing that the choice of lowK andL value codes results in
a large basin of attraction but imperfect end magnetization, while codes with higherK and
L values can potentially saturate Shannon’s bound but suffer from a rapidly decreasing basin
of attraction asK andL increase. To exploit the advantages of both architectures and obtain
optimal performance, a cascading method was suggested [5, 17] whereby one constructs the
matricesA andB from sub-matrices of differentK andL values, such that lower values will
drive the overlap increase between the decoded and the original messages to a level that enables
the higher connectivity sub-matrices to come into play, allowing the system to converge to the
perfectly decoded message [17].

Optimizing the trade-off between having a large basin of attraction and improved end
magnetization can be done straightforwardly [17] in the case of simple codes [6], but is not
very easy in general. Guidelines for optimizing the construction in the general case have been
provided in [5]; the key points include: (1) the first sub-matrices are characterized by lowK

andL values (62), whileK values in subsequent sub-matrices are chosen gradually higher,
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so as to support the correction of faulty bits, andL = 1; (2) keeping the number of non-zero
column elements as uniform as possible (preferably fixed); (3) to guarantee the inversion of
the matrixB, and since noise bits have no explicit correlation, we use a patterned structure,
Bi,k = δi,k + δi,k+5, for theB sub-matrices withL = 2 andBi,k = δi,k for L = 1; (4) the sub-
matrix with the lowestK value, which dominated the dynamics in the initial low-magnetization
stage has to include some oddK values in order to break the inversion symmetry, otherwise the
two solutions withm = ±1 are equally attractive. It was also found to dramatically improve
the convergence times.

We will now focus on two specific architectures, constructed for the cases ofR = 1
2 = 1

4,
to demonstrate the exceptional performance obtained by employing this method. In each of
the cases we divided the composed matrix [A|B] into several sub-matrices characterized by
specificK andL values as explained in table 1; the dimensionalities of the fullAandBmatrices
areM ×N andM ×M, respectively. Sub-matrix elements were chosen at random (in matrix
A) according to the guidelines mentioned above. Encoding was carried out straightforwardly
by using the matrixB−1A. The corrupted messages were decoded using the set of recursive
equations of [4], using random initial conditions for the signal while the initial conditions for
the noise vector where obtained according to the noise and signal probabilities equation (4).
The prior probabilities of were chosen according to (4) and (3).

In each experiment,T blocks ofN -bit unbiased messages were sent through a Gaussian
noisy channel of zero mean and varianceσ 2 (enforced exactly); the bit error rate, denoted
pb, was monitored. We performed betweenT = 104–5× 104 trial runs for each system size
and noise level, starting from different initial conditions. These were averaged to obtain the
mean bit error rate and the corresponding variance. In most of our experiments we observed
convergence after less than 100 iterations, except very close to the critical noise level. The main
halting criterion we adopted relies on either obtaining a solution to (5) or by the stationarity
of the firstN bits (i.e., the decoded message) over a certain number of iterations. One should
also mention that the decoding algorithm’s complexity is of O(N) as all matrices are sparse.
The inversion of the matrixB is carried out only once and requires O(1) operations due to the
structure chosen.

The construction used for the matrices in these two cases appear in table 1 as well as
the maximal standard deviationσNc for whichPb < 2× 10−5 for a given message lengthN ,
the predicted maximal standard deviationσ∞c once finite size effects have been considered
(discussed below) and Shannon’s maximal standard deviationσc defined in (2). These results,
as well as other results reported here, may be improved upon by avoiding matrices with
small loops and by replacing the method of belief propagation by belief revision (our random
construction of the matrixA even allows for small loops of size one). It was shown that both
improvements have a significant impact on the performance of these types of codes [4, 15].
With these improvements, the actual bit error is expected to be typically lower than the reported
value ofPb = 2× 10−5; however, as we have been limited to aboutT = 5× 104 trials per
noise value we can only provide an upper bound to the actual error values.

To compare our results to those obtained by using turbo codes [18] and in [13] we plotted
in figure 1 the two curves (dotted and dashed, respectively), forN = 103 and 104, against the
results obtained using our cascading connection method (filled triangles). It is clear from the
figure that results obtained using our method are superior in all cases examined. Furthermore,
from table 1, one can conclude that the averaged connectivities,C, for values ofR = 1

2 and 1
4

are 5 and 9 respectively for the matrixA, and 3
2 for the matrixB. Similarly, the averagedK

values forR = 1
2 and 1

4 areK = 5
2 and 9

4, respectively. These figures are much smaller than
those used in [12,13] and other irregular constructions. MinimizingK andC is of great interest
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Figure 1. Bit error ratepb as a function of the standard deviation for a given code rateR = 1
2

for systems of sizeN = 1000, 10 000 (right and left, respectively). Our results for each system
size appear as black triangles, while results obtained via the turbo code and in [13] for systems of
similar sizes appear as curves (dotted and dashed, respectively).

to practitioners since decoding delays are directly proportional to theK andC values used [4].
It is clear from figure 1 that the finite-size effects are significant in defining the code’s

performance. It is therefore desirable to find the performance in the limit of infinite messages
which are also assumed in deriving Shannon’s bound. We employ two main methods for
studying the finite-size effects. (a) The transition from perfect (m(σ) = 1) to no retrieval
(m(σ) = 0), as a function of the standard deviationσ , is expected to become a step function
(at σ∞c ) asN → ∞; therefore, if the percentage of perfectly retrieved blocks in the sample,
for a given standard deviationσ , increases (decreases) withN one can deduce thatσ < σ∞c
(or σ > σ∞c ). (b) Convergence times near criticality usually diverge as 1/(σ∞c − σ); by
monitoring average convergence times for variousσ values and extrapolating one may deduce
the corresponding critical standard deviation.

Both methods have been used in finding the critical values forR = 1
2 and 1

4; the results
obtained appear in table 1. In figure 2 we demonstrate the two methods: in (a) we ordered
the samples obtained forR = 1

2, σ = 0.915, 0.935 (dashed and solid curves respectively)
andN = 1000, 10 000 (thin and thick curves respectively) according to their magnetization;
results with higher magnetization appear on the left and thex-axis was normalized to represent
fractions of the complete set of trials. One can easily see that the fraction of perfectly retrieved
blocks increases with system size indicating thatσ < σ∞c . In figure 2(b) one finds log–log
plots of the mean convergence timesτ for R = 1

2,
1
4 andN = 10 000 carried out on perfectly

retrieved blocks with less than three error bits. The optimal fitting of expressions of the form
τ ∝ 1/(σ∞c − σ) provides another indication for theσ∞c values, which are consistent with
those obtained by the first method.

We end this paper by discussing the main difference between our method and those
presented in [11–13]. Firstly, our construction builds on sub-matrices of differentK and
L values keeping the connectivity in each of the columns as uniform as possible; this equates
the corrections received by the various bits while allowing them to participate in different multi-
spin interactions, so as to provide contributions of different types throughout the dynamics.
In contrast, other irregular codes build on the use of different column connectivities such that
a small number of bits, of high connectivity, will lead the decoding process, gathering more



1680 I Kanter and D Saad

0 0.5 1
0

0.2

0.4

0.6

0.8

1
m

0.10.05

σc�σ

30

50

80

120

τ

8

(a) (b)

(a) (b)

Figure 2. (a) The block magnetization profile forR = 1
2 , σ = 0.915, 0.935 (dashed and solid

curves respectively) andN = 1000, 10 000 (thin and thick curves respectively), showing the sample
magnetizationm versus the fraction of the complete set of trials. A total of about 10 000 trials
were rearranged in a descending order according to their magnetization values. One can see that
the fraction of perfectly retrieved blocks increases with system size. (b) Log–log plots of mean
convergence timesτ for N = 10 000 andR = 1

2 ,
1
4 (white and black triangles, respectively). The

σ∞c values were calculated by fitting expressions of the formτ ∝ 1/(σ∞c − σ) through the data.

Table 1. The critical noise standard deviationσNc andσ∞c obtained by employing our method for
various code rates in comparison with the maximal standard deviationσc provided by Shannon’s
bound. Details of the specific architectures used and their row/column connectivities are also
provided.

R A K B L σ 10 000
c (dB) σ∞c (dB) σc (dB)

1
2

1
10N ×N 1 1

10N × 2N 2 0.89 0.973 0.979
9
10N ×N 2 9

10N × 2N 2 (1.012) (0.238) (0.185)
3
4N ×N 2 3

4N × 2N 1
3
20N ×N 6 3

20N × 2N 1
1
10N ×N 7 1

10N × 2N 1

1
4

3
2N ×N 1 3

2N × 4N 2 1.45 1.537 1.550
1
2N ×N 4 1

2N × 4N 2 (−0.217) (−0.721) (−0.797)
1
3N ×N 4 1

3N × 4N 1
5
6N ×N 3 5

6N × 4N 1
5
6N ×N 2 5

6N × 4N 1

corrected bits as the decoding progresses. Secondly, [11–13] as well as others point to the
need for high multi-spin interactions for achieving performance close to Shannon’s bound; we
show here that lowK, L andC values are sufficient for near-optimal performance (for values
ofR = 1

2 and1
4 the averaged connectivities areC = 5 and 9 respectively, for the matrixA, and

3
2 for the matrixB), allowing one to carry out the encoding and decoding tasks significantly
faster. Our work suggests that it is possible to come very close to saturating Shannon’s bound
with finite connectivity, at least for the code rates considered here. It is plausible that operating
close toR = 1 will require higherK, L values and may require infiniteC or C values; this
question is currently under investigation.
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We have shown that through a successive change in the number of multi-spin interactions
(K andL) one can boost the performance of Gallager-type error-correcting codes. The results
obtained here for the case of additive Gaussian noise suggests competitive performance to
similar state-of-the-art codes for finite-N values; extending the results to the case of infinitely
large systems suggest that the current code is less than 0.1 dB from saturating the theoretical
bounds set by Shannon. It would be interesting to examine methods for improving the finite-
size behaviour of these type of codes; these would be of great interest to practitioners.
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